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THE EFFECTS OF OPERATING PROPELLERS ON THE LONGITUDINAL
CHARACTERTSTICS AT HIGH SUBSONIC SPEEDS OF A FOUR-
ENGINE TRACTOR ATRPLANE CONFIGURATION HAVING
A WING WITH LO® OF SWEEPBACK AND AN

ASPECT RATIO OF 10

By Fred B. Sutton and Fred A. Denmele

SUMMARY

) An investigation has been conducted at high subsonlc speeds to
determine the effects of operating propellers on the longitudinsal cher-
acteristics of & four-engine tractor ailrplane configuration having a L0°
swept wing with an aspect ratio of 10. Wind-tunnel tests were conducted
through ranges of sngles of attack and propeller thrust coefficients at
Mach numbers from 0.60 to 0.90 at Reynolds numbers of 1,000,000 and
2,000,000, The effects of varylng propeller blade angle, tail incidence,
and vertical height of the horizontal tail were investigated.

The over-all effecis of operating propelliers on the longitudinal
characteristics were not large when compared to the effects of propeller
operation at low speed. Compared to the model wlth the propellers off,
operation of the propellers at constant thrust coefficlents generally
decreased the static longitudinal stability. Increasing the propeller
thrust coefficient at & constant Mach number increased both the static
longitudinal stability and the trimmed 1ift coefficient. Operation of
the propeliers at constant thrust coefficient Increased the wing 1ift-
curve slope but had little effect on the variation of lift-curve slope
with Mach number. Operation of the propellers had littie effect on the
Meach number for longitudinal force divergence at a constant 1ift coeffi-
cient buft resulted in a decrease in the rate of change of longitudinal
force coefficlent with Mach number at supercritical speeds. This efifect
Increased with increasing propeller thrust coefflclent and with increas-
Ing 1ift coefficient.

A method of predicting the effects of propeller normal force on the

pltching-moment characteristics of the configuration is presented. Com-

B parisons with measured effects indicate that the accuracy of the method
is good.
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Railsing the horizontal tall had little effect on the longitudinal
stability with the propellers removed but was destebilizing with the
propellers operating. - '

For en assumed alirplane, operating at the power requlred for level
flight at an altitude of 40,000 feet, calculations indicate only a
small change in the stable variation of tail incidence for trim with
Mach number compared to the propellers-off condltion.

INTRODUCTION

The potentialities of turblne-propeller propulsion systems are well
recognized, perticularly with regerd to the take-off and range capabilll-
tles of multiengine airplanes. The combination of a turbine-~propeller
propulsion system and sn airframe configuration utilizing a sweptback
wing of high aspect ratio should meke possible the achievement of long-
range flight at relatively high subsonic speeds. This propulsive system
could utilize supersonic propellers with high disc loadlings. It is not
believed that the effects of these propellers on the longitudinal char-
acteristics of swept wings can be adequately predicted, either by exlst-
ing theoretlical methods or by avallable experimental data.

An investigation has been mede in the Ames 12-foot pressure wind
tunnel to determine the longitudinal characteristics of a representative
multiengline alrplsne configuration with sweptback wings of high aspect
ratio. The investigation was made with and without operating supersonic
propellers. The power-off longitudinal characteristics of several com-
binations of the components of thls configuration have been presented
in references 1 to 4¥. The characteristics of the propeller are reported
in reference 5. The results of a low-speed investigation to determine
the effects of operating propellers on the longitudinal charscteristlcs
are presented in reference 6. The present report is concerned with the
effects of operating propellers on the longitudinal characteristics of
the configuration at high subsonic speeds., Tests were conducted over a
Mech number range of 0.60 to 0.90 at Reynolds mmbers of 1,000,000 and
2,000,000, If the model is assumed to be 1/12 scale, the power condl-
tions simulated et most test Mach numbers varied from windmilling to
5000 horsepower per engine at an altitude of 40,000 feet or to 20,000
bhorsepower per engine at sea level.
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NOTATION

upflow angle, average angle of local flow at the 0.7 propeller
radius and at the horizontal center line of the propeller
plane, measured with respect to the thrust axis in a plane
parallel to the plane of symmetry

mean-line designation, fraction of chord over which the design
load is unliform

normal acceleration

wing semispan perpendicular to the pia.ne of symmetry

propeller blade width

1ift coefficlent, ol
as
tail 1ift coefficlent, _t_a.ils___l_i_f_t
s

pitching-moment coefficient referred to the center of gravity,
pitching moment

gsc
(See fig. 1(a).)}

propellier normal-force coefflcient, —g—s-

P
power coefficient .
’? pn®D°

thrust coefficient per propeller, H
pnD*
longitudinal force coefficlent, —}-I-S-
G . Q
local wing chord parallel to the plane of symmetry

locsal wing chord normal to the reference sweep line

(See table I.)
mj_ i — ik
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[y :
wing mean aerodynamic chord, e :

£

wing-sectlon design 1ift coefflclent

center-of-gravity location
(See fig. 1(a).)

acceleration due to gravity
propeller diameter L _ . . L
maximum thickness of propeller blade section

horsepower per engine

incidence of the horizontal tall with respect to the wing-
root chord

propeller advance ratio, g%

tail lergth, distance between the guarter points of the mean
aerodynamic chords of the wing and of the horizontal tail
measured parallel to the plane of symmetry

free-stream Mach number

normel force per propeller

propeller rotationsl speed

A}
normal acceleration factor, %E
shaft power per motor

free-stream dynemic pressure, % Y2

Reynolds number, based on the wing mean aerodynamic chord
propeller-tip radius

propeller-blade-gection radius
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g (%)

Cp
dig

area of semispan wing

area of semispan tail

thrust per propeller parallel to the stream
thrust coefficlient per propelier, ———
pVED2
wing section maximm thickness
free-stream velocity

welight of assumed full-scale airplane

longitudinal force, parallel to stream and positive in a
dragwise direction

lateral distance from the plane of symmetry

angle of attack of the wing chord at the plene of symmetry
referred to herein as the wing-root chord

angle of attack of the tall
propeller blade angle measured at 0.TO tip radius
propeller-blade-section angle

effective downwash angle

Cp J
propeller or propulsive efficlency, —g——

P
mass denslty of alr

angle of local wing chord relative to the wing-root chord,
positive for washin, measured in planes parallel to the
plane of symmetry

tail efficiency factor (ratio of the lift-curve slope of the
horizontal t2il when mounted on the fuselage in the flow
field of the wing to the lift-curve slope of the isolated
horizontal tail)

tail effectiveness parameter, measured for = glven angle of
attack

-
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Subscripts

av average

w wing

t tail

MODEL AND APPARATUS

The semispan model represented the right-hand slde of a hypothetl-
cal four-engine airplane. Figures 1(a) through 1(d) and teble I present
dimensions and details of the model. Figure 2 shows the model mounted
in the wind tunnel. The selection of the geometric propertles and the
details of the construction of the wing, nacelles, fences, tail, and
fuselage have been discussed in references 1, 2, and 3. The three-
bladed supersonic propeller, designated NACA 1.167-(0)(03)-058 and
having right-hand rotation, was specifically designed for the subject
investigation and is described 1n detall in reference 5. Figure 3
presents the propeller plan-form and blade-form curves.

The power to drive the propellers was supplied by a variable-speed
induction motor in each nacelle. Each motor had & normal rating of
75 horsepower at 18,000 revolutions per minute. The propellers were
driven through gears at & rotationsl speed 1.5 times that of the motors.
The shaft power delivered to the propellers was determined by measuring
the input power to the motors and applying correctlons for the motor
and gearbox losses. Motor rotational speed was measured by means of an
electronic tachometer on each motor.

TESTS

Test Conditions

The longitudinal characteristics of the model were investigated
over & Mach number range of 0.60 to 0.90 at Reynolds numbers of 1,000,000
and 2,000,000. At each Mach number, tests were made with propeller blade
angles of 41° and 51° through an angle-of-attack range of 2° to 10°., At
each angle of attack, the propeller rotational speed was varied from
windmilling to the maximum obtainable, being limited by elther maxlmum
motor speed or maximum motor power. Measurements of the static pressures
on the wind-tunnel walls during the tests at a Mach number of 0.90

-
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indicated the possibillity of partisl choking of the wind tunmel. It is
believed that the force and moment data shown at this Mach number are
partially affected by this phenomenon.

Tests were made at tail heights of O b/é and 0.10 b/é above the
fuselage center line. Tail incidences of -2°, -4°, and -6° were inves-
tigated at the O b/2 tail position.

Propeller Calibration

The propeller was calibrated on a speclally comstructed calibration
nacelle which allowed the characteristics of the propeller, in the pres-
ence of the spinmer and the nacelle forebody to be ascertained. Refer-
ence 5 presents the details of the calibration procedure and the results
of the calibration. Propeller normasl-force characteristics were deter-
mined as part of the propeller calibration and are presented herein.

REDUCTION OF DATA

Thrust Coefficient

The model thrust coefficient, Te, used hereln is the average for
the two propellers, and is obtaired from the results of the propeller
calibration (ref. 5). Advance ratios were computed for each of the
propellers, and the corresponding thrust coefficlents were obtained
from the calibration results at & comparsble Msch number, Reynolds
number, average propeller upflow angle (ref. 7), and propeller blade
angle. Typical variastions of thrust coefficient wlth advance ratioc for
one propeller (ref. 5) are shown in figure k.

Adjustment to the advance ratios of the propellers operating on
the model was necessary since propeller blade angles could be duplicated
only to within 30.15° between the propeller calibration and the present
test. In addition, it is probable that differences in the effective
propeller blade angles between the model snd the calibration nacelle
existed becduse of slightly dissimiler radial distribution of upflow in
the plane of the propeller (ref. 7). The adjustment used was based on
the observed differences in windmilling advence ratios between propeller
operation on the model and on the calibration nacelle &t comparable
geometrlic propeller blade angles end test conditions. It was assumed
that thrust as well as power was approximately equal at the windmilling
advance ratios for the two operations and that the small blade-angle
difference did not affect the rate of change of thrust coefficient with
advance ratio. Advance ratios measured for the propellers operating on

L



8 L W NACA RM A53J23

the model were adjusted by the difference between the windmilling
advance ratios measured for the propeller operating on the model and
on the callbration nacelle. Thrust coefficlents for the powered model
were then obtained from the callibration results at these adjusted
advance ratlos. These effects were generally small and changed the
propeller thrust coefficlent by only 0.002 at the higher Mach numbers
and the larger thrust coefflcients.

Force and Moment Data

The basic data obtained at various thrust coefficients at constant
angle of attack were reduced to conventional form and are presented as
11ift coefficient as & function of angle of attack, and longitudinal
force coefficient and pitching-moment coefficlent as functions of 1ift
coefficient. These variations with angle of attack and 1ift coefficlent
were obtained by cros&g plotting the basic data for a lift-coefficient
and thrust-coefficient relationship corresponding to an assumed full-
scale power condition (fig. 5) and for constant thrust coefficient.

Correctlons

The data have been corrected for constriction effects due to the
presence of the tumnel walls, for tunnel-wall interference originatlng
from 1ift on the wing, and for longitudinal force tares caused by aero-
dynamic forces on the exposed portion of the turntable upon which the
model was mounted.

The effects of wind-tunnel-wall comstraint on the propeller slip-
streams were evaluated by the method of references 8 and 9 and were
found to be negligible. The dynamic pressure was corrected for con-
striction effects due to the presence of the tunnel walls by the method
of reference 10. These corrections and the corresponding correctlions
to the Mach number are listed in the following table:

Corrected | Uncorrected| %Corrected
Mach number | Mach number qUncorrected
0.60 0.598 1.006
.70 695 1.009
.80 0793 lcoll
.83 821 1.013
.86 .848 1.01k%

.90 .883 1.022

S
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Corrections for the effects of tunnel-wall interference originating
from the 1ift on the wing were caslculated by the method of reference 11,
The corrections to the angle of attack and to the longitudinal Fforce
coefficient showed insignificent varistions with Masch number. The cor-
rections added to the data were as follows:

s

Oa38 CL

Ay

0.0059 €;2

The correction to the pitching-moment coefficient had significant varia-
tions with Mach number. The following corrections were added to the
pitching-moment coefficienta:

Al = K1 CLigsy off (Tail of?f)

oCny
&m = K1 CLigsy opp - [(Ka CLinil off - m) -51—;:! (Tail on)

The values of K; and K, for each Mach number were calculated by the
method of reference 11 and are glven in the following table:

M K1 Ko

0.60§ 0,0048 ] 0.77
.0} .0057| .79
80} .0069] .81
83| .0073| .82
86| .00181 .83
.90 .0087i .85

The correction constants for the tumnel-wall interference effects were
computed for propeller-off conditions since the effects of propeller
slipstream on wing 1ift and tail effectiveness were small cover the Mach
number range of the investigation. However, the 1lift coefficients used
to determine the actual corrections were total values refliecting 811
the propeller effects. Results of the propeller calibration Indicated
the effects of propeller direct forces to be negligible.

Since the turntable upon which the model was mounted was directly
connected to the balance system, a tare correction to longitudinal
force was necessary. Thils correction wes determined by multiplying the
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longitudinal force on the turntable, as determined from tests with the

model removed from the wind tummnel, by the fraction of the turntable

ares not covered by the model fuselage. The following corrections =
were subtracted from the measured longltudinal force coefficients:

M |%Xegre
0.60 |0.0025
.70 | .0026
.80 | .0028
.86 | .0030
.90 | .0032

No attempt has been made to evaluate tares due to interference between
the model and the turntable or to compensate for the tunnel-flocor bound-
ary layer whilch, at the turntable, had a displacement thickness of one-
half inch.

RESULTS AND DISCUSSION

An index to the basic date is presented in table IT. The bhaslc
data are tabulated in tables III through XI, and the coefflcients of
lift, longitudinal force, and pitching moment are plotted in conven-
tional form for constant values of thrust coefficient in figures 6 to 1k,
Figures 15 through 31 present, for selected conditions, the effects of
propeller operation, Mach number, tail height, Reynolds number, and
propeller blade angle on the longltudinal characteristics of the model.

Effects of Operating Propellers on the
Longitudinal Characteristics

The longitudinsl characteristics of the model, with and without
operating propellers, are presented in figures 6 through lh. In general,
the effects of the operating propellers were not large compared to the
propeller effects at low speed shown in reference 6. Compared to the
model. without propellers, operation of the propellers at constant thrust
coefficients generally increased the lift-curve slopes and decreased the
static longitudinal stability. The term "static longlitudinel stability,"
&8s used herein, refers to the slopes of the curves of pltching-moment
coefflclent as a function of Lift cocefficlent. Decreases in stabllity
are indicated by reductions in the negative slopes of the curves. Gen-
erelly, the trim 1lift coefficients increased with increasing thrust
coefficient but at any constant thrust coefficient they decreased with -
increasing Mach mmber. There was no large effect of operating propel-
lers on the variation of longitudlnal force coefficlernt with 1ift
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coefficient at 1ift coefficients less than about 0.0 or 0.50. It is
believed that the erratic variations shown in some of the longitudinal
force data at a Mach number of 0.90 are due, at least in part, to the
choking phenomenon previously mentioned.

The variations of the longltudinal characteristics with Mach number
are presented in figures 15, 16, and 17. These variations are shown at
1ift coefficients of 0.20 and 0.40 for the model with the propellers off
and with the propellers operating at several constant values of thrust
coefficient.

Operation of the propellers increased the lift-curve slopes (fig. 15)
but, in general, had only small effects on the variation of lift-curve
slope with Mach nmumber. At a 11ft coefficient of 0.40, operating the
propellers st a thrust coefficient of 0.03 increased the Mach number for
1ift divergence from approximately 0.83 to epproximately 0.86.

Figure 16 shows the variation with Mach number of the increment of
longitudinal force coefficlent above its value at a Mach number of 0,70
for several different values of propeller thrust coefficient and with
propellers removed. It was anticipated that the Mach number of longitu-
dinal force divergence would be decreased as & result of the increased
velocity behind the operating propellers. However, this effect did not
occur, and the Mach mumber for drag divergence was little affected by
operation of the propellers. At supercritical speeds, the drag rise
with increasing Mach number was reduced considersbly with increase 1In
propeller thrust coefficient. This reduction was due, in part, to
increases in the wing lift-curve slope with the propellers operating.
Thus, the same 1ift coefficient can be obtained at a lower angle of
attack and this Pfact tended to reduce the shock-induced losses over the
outer portion of the wing span. It is &8lso thought that some of the
effect stemmed from increases in the effective Reynolds numbers of the
wing sections immersed in the propeller slipstreams. It is doubtful
that a favorsble Reynolds number phenomenon would prevail at full-scale
Reynolds numbers.

The effects of Mach number on the slopes of the pltching-moment
curves are presented in figure 17 at 1lift coefficients of 0.20 and 0.10
for the model with the propellers off and with the propellers operating
at several constant values of thrust coefficient. The effects of Mach
number were generslly greater with the propellers operating than with
the propellers off. In genersl, the siatic longitudinal sitaebliity
decreased slightly with Mach number when the tail was on and increased
slightly when the tail was off up to & Mach number of spproximately 0.82.
At higher speeds, changes in stability due to Mach number were inconsist-
ent and more promounced.
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Effects of the Operating Propellers on the
Longitudinal Stability

The factors which determine the static longitudinal stebility of a
propeller-drliven airplane are the stabllity with the propellers removed,
the direct propeller forces normal to and along the thrust axis, and the
effects of the propeller slipstream on the flow on the wing and at the
horizontal tail. Figures 18 and 19 show for several Mach numbers these
varlous effects of the operating propellers on tall-on and tail-off
statlc lorgitudinal stability at zero thrust, at & comparstively high
constant thrust coefficient, and at the condltions of constant horse-
power shown in figure 5. The data presented were obtalned by adding
pltching-moment increments, referred to the center of gravity, due to .
propeller thrust and normal force (from the propeller callbration deta)
to the propellers-off pitching-moment deta. This total wag then sub-
tracted from the power-on pitching moments to ascertain approximetely
the slipstream effects. For both constant thrust and constant power, 3 o
the various effects of the operating propellers on the pitching-moment
characteristics of the model were small., For the center-of-gravity -
position shown on figure l(a), normal force and thrust of the propellers
were generally destebllizing. The effects of the propeller slipstream
on the wing were generally destebilizing while thelr effects on the tall -
were generally stablllzing.

Figure 20 presents, for a Mach number of 0.80 and & constant thrust
coefficlient of 0.0k, a comparison of the predicted and measured varia-
tions with angle of attack of the incremental pitching-moment coefficlent
due to propeller normel force. The measured varlatlons of increments of
pitching-moment coefficient with angle of attack due to propeller thrust )
and propeller slipstream on the wing and teil are also shown. The effect o
of propeller normal Fforce omn the pltching moment was calculated by the
method presented in the Appendix. The predicted pltching-moment incre-
ments due to the propeller normsl force are In good agreement with the
measured effects. The small discrepancy at the lower angles of attack
is believed due to lift stemming from the asymmetry of the nacelle fore-
body. The theoretical computations did not account for any 1lift contri-
butlon due to the nacelle forebody.

The effects of propeller slipstream on the pitching-moment charac-
teristics of the wing and tsail could not be predicted to any acceptable
degree of accuracy with existing methods. It is belleved that the com-
bination of the effects of wing sweepback, of viscous separation, of
propeller slipstream rotation, and of wing-nacelle interference makes
the estimation of slipstream effects on the pitching-moment character-
istics of the wing and tail virtually impossible for the present model.

Figure 21 shows the variation with Mach number of the various
effects of the operating propellers on the pitching-moment-curve

w
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slopes A(de/hCL). The data are presented for a representative 1lift
coefficient for level flight (Cp, = 0.40) and for constant thrust coef-
ficient and constant simulated horsepower. The effects of slipstream
on the horizontal tall were assumed to be the differences between tail-
on and tail-off slipstream effects. The effect of propeller nmormal
force varied with Mach number at constant horsepower because of the
relationship of thrust coefficient and 1ift coefficlent used in calcu-
lating the conditions (fig. 5). The variations of the effects of the
propeller slipstream wilth Mach number were small, generally amounting
to a change in pitching-moment-curve slope of less than +0.05.

Effects of the Operating Propellers on the Stability Contribution
of the Horizontal Tail

The horizontal-tall contribution to stebllity is & function of the
downwash factor 1 - (de¢/da), the tall-efficiency factor n.(a,/a),

(8Cr, /aa)
and the ratio L2 isolated tall  (gjculations were made using
(aCr/aa)igyr opp
the method of reference 12 to evaluate the effective downwash character-
istics and the tail efficiency factor with and without operating propel-

lers. The force dats presented in filgures 6 through 9 and the isoclated
tail-force data presented in reference 3 were used for the computations

of effective downwash angle €, nt(qt/q), and the ratio
ac
(8CLp/dat); 1 oveq tasl

(aCL/da) g1 opp
bers in figures 22, 23, and 24 as functions of angle of attack. It was
assumed for the computation of downwash angle € and tail-efficlency
factor nt(qt/Q) that the Mach number at the tall was the same as the
Pree-stream Mach number. The effect of the propellers on downwash
smounted to a change in downwash angle of 0.5° or less. At high angles
of attack the effect of the operating propellers on the factors qt(qtfﬁ)

(401, /A%), 1 teq tatz
and 82> was sizable, however, these effects are
(dCr/da)easq orr

compensating and thelr over-all effect on tall effectiveness was small.

and the results are shown for several Mach num-

The variations with Mach number of the tail-effectiveness parameter,
BCm/Bit, the isolated tail lift-curve slope, and the various factors
affecting the stability contribution of the tail are shown in figures 25,
26, and 27 for & representative level flight, high-speed altitude (a=4°).
The effects of Mach number on chjait were small wlth and without the

O
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opereting propellers. For the selected condition, operation of the pro-
pellers had little effect on the variations of the factors 1 - (3¢/da),

(d&Cr., /day)
Lt isolated tall .4in Mach mumber.

(acr/da) yo51 opr

n¢(as/a), and

The effects of horizontal-tall height on the pitching-moment-curve
slopes of the model with and without operating propellers sre shown in
figure 28 for several Mach numbers. Raising the horizontael tail
increased the static longitudinal stebility slightly with the propeliers
off at Mach mmbers less than 0.90, but was destabilizing over the Mach
number range of the investigation with the propellers operating.

Propulsive Characteristics

Figure 29 presents for an upflow angle of approximately 0° and a
Mach number of 0.80, & comparison of the characteristics of the isclated
propeller (ref. 5) with the propulsive characteristics of the model.
Also shown is a comparison of the varilations with Mach number of the
efficiency of the isolated propeller and the propulsive efficiency of
the model at & constant thrust coefficlent of 0.0k.

The propulsive characteristics include the 1ift due to the propel-
ler slipstream (ref. 13) and the effects of the operating propellers on
longitudinal force characteristics previously discussed. The propeller
is credited with these effects by calculating the effective thrust coef-
ficients 2nd propulsive efficiencles of the model as follows:

_ 2 -
Clerrective = (8/40®) 52 <:CXPrOPS on = “props o const. Cr,,
* Trops on

and propulsive efficiency

- Clerrective ¥

Cp

Figure 29 indicates that the effective thrust coefficients for
the conditions selected for the comparison were greater than the
thrust coefficlents measured for the isolated propeller, and that the
corresponding propulsive efficiencles, consequently, exceeded the effi-
ciencies indicated for the isolated propeller. Generally, the propul-
sive efficiency increased with incressing Mach mumber while the effi-
clency of the isolated propellers decreased slightly. This effect 1s
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believed to be associated wlth the decrease 1n the rate of change of
longitudinal force coefficient with Mach number indicated ir figure 16.

In computing propulsive efficiencies, no distinction was made
between the effects of propeller slipstream and the effects of propeller
direct forces. However, for the range of Mach numbers and propeller
thrust coefficients of the subject investigation, the effects of propel-
ler direct forces on lift were negligible.

Longitudinal Characteristics of an Assumed Airplane

Figure 30 presents a summsation of the longltudinal characteristics,
as calculated from the results of the subject investigatlon, of an
assumed ailrplane operating with the power required for level flight at
an altitude of 40,000 feet. These characteristics are presented as
functions of Mach number or normal-acceleration factor. The lift coef-
ficients shown are computed values based on a wing loading of 65 pounds
per square foot and the assumed airplane altitude.

The effects of propeller operation at the power for level flight on
the static longitudinal stebllity of the airplane were small (fig. 28).
Compared to propellers-off stability a maximm decrease In pltching-
moment-curve slope of 0.0k was indicated at a Mach number of 0.70. Only
a small change was Indicated in the stable variation of tall incldence
for trim with Mach number between the conditions of propellers off and
propellers operating at the power required for level flight. At constant
Mach nmumber, the variation of tail incidence for trim with normal accel-
eration was not greatly affected by the operation of the propellers at
the power required for level flight.

Effects of Reynolds Number and Propeller Blade Angle

Lift-curve slopes, pitching-moment-curve slopes, and longitudinsl
force coefficients for the model at a 1ift coefficient of 0.k0, with
and wlthout opersating propellers, are presented in figure 31 for
Reynolds numbers of 1,000,000 and 2,000,000 at Mach mumbers of 0.70, 0.80,
and 0.90. These slopes and coefficients are also presented for propelier
blade angles of 41° and 51° at Mach numbers of 0.70 and 0.80. The
effects of varying Reynolds nmumber and propeller blade angle on the 1ift-
curve slopes and pltching-moment-curve slopes were negligible at Mach
mmbers of 0.70 and 0.80. Apprecisble Reynolds number effects were evi-
dent on these slopes at a Mach mumber of 0.90. However, 1t is believed
that the date for this Mach mumber were affected by the partial choking

previously mentioned.
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Longitudinal force coefficients were only slightly affected by
changes of Reynolds number and of propeller blade angle at a Mach num-
ber of 0.70 and 0.80. At a Mach number of 0.90, increasing the Reynolds
number from 1,000,000 to 2,000,000 resulted in sizable decreases in
longitudinal force coefficient.

CONCLUSIONS CoT

An investigation has been made of the effects of operating propel-
lers upon the longltudinal characteristics of a four-engine tractor
airplane conflguration employlng a wing with 40° of sweepback and an
aspect ratio of 10. The Mach number range of the iInvestigatlion was 0.60
to 0.90. The following conclusions were indicated:

1. The over-all effects of operating propellers on the longitu-
dinal characteristice at high subsonic speeds were not large when com-
pared to the effects of operating propellers at low speeds. The pro- -
pellers cperating at constant thrust coefficlents generally resulted in
a reduction in the longitudinal stability. Increasing the propeller
thrust coefficlent while maintaining a constant Mach number increased : i
both the longitudinal stability and the trimmed 1ift coefficient.

2. Operation of the propellers at constant thrust coefficlent
increased the wing lift-curve slope but had little effect on the varia-
tion of lift-curve slope with Mach number.

3. Operation of the propellers had little effect on the Mach num-
ber for longitudinal force divergence at & constant 1lift coefficient )
but resulted in a decrease in the rate of change of longitudinal force -
coefficilent with Mach number at supercritical speeds., This effect
increased with increasing propeller thrust coefficlent and with lncreas-
ing 1ift coefficient.

Y. It was possible to predict the effects of propeller normal
force on the longitudinal stability of the model with good accuracy.
However, the propeller slipstream effects on the wing and horizontal
tall could not be predicted with existing methods to any acceptable
degree of accuracy.

5. Raising the horizontal tail had little effect on the longitu- -
dinal stability with the propellers removed but was destabilizing with
the propellers operating.

6. TFor an assumed asirplane, operating at the power required for -
level flight at an altitude of 40,000 feet, calculations indicate only

R '
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a small change in the stable variation of tail Incidence for trim with

either Mach number or normsl accelerstion compared to the propellers-
off condition.

Ames Aeronautical Leboratory
National Advisory Committee for Aeronsutics
Moffett Field, Calif., Oct. 23, 1953
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APPENDTX

CALCULATION OF PROPELLER NORMAL FORCE

Isolation of propeller effects on the longitudinal stablility of an
alrplane requires either & knowledge of the normal-force characteristics
of the propeller or a sultable method of calculating those characteris-
tics. The method used herein for predicting propeller normsl force is
Presented in this Appendix in addition to experimental normal-force data
obtalned with the calibration nacelle reported in reference 5.

Presented in figure 32 is propeller normal-force coefficient as
& function of upflow angle at 0.7 propeller radlus for the
NACA 1.167-(0)(03)-058 three-blade propeller used in this investigation.
Shown In figure 33 for & representative blade angle and Mach number at
an upflow angle of 5° is a comparison of the experimental and theoretical
variation of normal-force-curve slope with thrust coefficient. It may
be noted that the agreement between the theoretical and experimental
slopes is good, the theoretical values being approximstely 95 percent
of the experimental normel-force-curve slopes.

The method used in calculating propeller normal force, which was
proposed by Messrs. Vernon L. Rogallo and John L. McCloud ITII of the
Ames Aerconautical Laboratory, is based on the relationship of the pro-
peller normal force to the oscillating torque-producing components of
force on the blades as they operate in the nonuniform flow field. This
can be expressed as follows:

l!' X=1,0
Cy = :JE z . (Cfl CcOB wfll(

X=X
where
Cy normal-force coefficient, .
qnd®

D bropeller diameter, £t

J advance ratio, v
nD

cry amplitude of 1 X P variation of torque-force coefficient
N normal force, measured perpendicular to thrust axis, 1b

X radial location of blade section, ——

RI
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Xg spinner radius, fraction of +tip radius
WP, phase angle of 1 X P variation of torque force
If it is assumed that there are no odd-order varistions of torque force

gbove the fundamentsl, the product (Cfl cos b.)fl) cen be found by the
following relationship: _

(cp, cos w £3) =1/2 (cf9=so° B cfn=2—ro°>
x

where

Q angular positlion gbout the thrust axis, measured counterclockwise
from the upper vertical posiltion as seen from the front, deg

The torque force coefficient can be celculated by its relstionship o
the thrust coefficlent, that 1s,

cp = c tan (9 + 7)

The formula for computing the thrust coefficient is the same as given
in reference 1llt, except that ¥ 1is replaced by *A and is as follows:

— ay cot @ - tan y V? sin A
®tges0, 2700 = KX x° 2 1 DX

d 57.3 aq
cot @ +

where

A upflow angle, angle of local flow at 0.7 propeller redius and at
the horizontal center line of the propeller, measured wlth
respect to the thrust axis in a plane parallel to the plesne of
symetry, deg

thrust

pn=p*

¢t section thrust coefficient,

K Goldstein ecorrectlon factor for finite number of blades
r radius to blade sectlon, £t

Rt propeller radlus, £t

—.
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ot

%

v

propeller induced angle of inflow, deg

tan-1 ( blade-section drag
blade-section 1lift

cpo + a3, deg

ta.n"1< V! cos A A)
DX + V' sgin

local velocity, ft/sec

RACA RM AB53J23

and where both + and - signs are indicated, the + is for Q = 90°, and
the - 18 for O = 270°.
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TABLE I.- GEOMETRIC FROPERTIES OF THE MODEL

Wing

Reference sweep line: Tocus of the gquarter-chord points of
sections inclined LO° to the plane of symmetry

Aspect ratio (Pull-span Wing)e o ¢ « ¢ « o ¢« e ¢ o ¢ o« « » o « 10.0
Taper ra-bio - - . L J * L] - - - - * L ] * - - [ ] L] - * - L - L] ] [ 0."!'
SweepbaCk * L J o L 4 * -« .. L ) > * [ ] - [ L L] L * - - - - - Ll [ ] * L J 1!‘00
mst - * . L [ 3 - * L 4 . - L L ] . - * L] * L] L] [ ] L ] L 4 L] L 2 L J L] L] L ] -50

Reference sections (norma.l to reference sweep line)

Aree (semispan model)e « « « o « o « o o @

Mean serodynamic chord . « o« « ¢ ¢ « « o o

Incidence (measured in the plane of symmetry)

Fences at y/b/2 = 0.33, 0.50, 0.70, and 0.85
(See Pig. 1(d) Por fence details.)

¢« a e o
- L ] . *
. = L

Nacelles
Fl'on'talarea(e&ch).-..-..-.........

In'board............-.-.-.-..
Ou‘bboard....................-

Propellers

Dimter - [ 3 - -« L] -* L] * - - * . - L] - L]

N\Mber Of .blades L J - L] L] - - - . L) * [} - - L] L 3 -«
Propeller-activity factor (per blade)e « ¢ o « « « «
Propeller-biade thickmess~chord ratio (0.70 radius).
Bolidity (per PIad2) « « « o ¢ o o « o o o « ¢ o o =

- - - L] * L]
- -

Horizontal Tall

Reference sweep line: Locus of quarter-chord points
inclined 40° to the plane of symmetry

A.B‘_pect ratio (f‘ull—s'p&n tail) -« & e & & o @

Tam ratio - * - - - L L] - - L 4 » L] - - - L - - - -
Sﬂeepba-Ck ®© ® 6 © ¢ ¢ ¢ 4 e o ¢ e e ¢ @ 5 & u O o @
Reference section (normal to reference sweep line) .
Tail leng‘bh, I-b ® 8 & 6 & ¢ 6 ¢ 6 = v e & b & ° o €

ROOL v ¢ ¢ ¢ ¢ o « « ¢« « « « NACA 001k, a=0.8 (modified) c;i=o.1p
Tip e ¢ o ¢ @ @ s ¢ & =+ e @ NACA OOll, B-=0.8 (mod.ified) 0113002“

Inclination (measured with respect to wing root chord)

Blade 5€ctiOnS ¢ « o« ¢« « « ¢ o « « » » o Symmetrical NACA 16 series

6.9k ££2
. 1.251 £%
e e @ .30

.« « 0.208 £t2

s e o o ‘6.50
s & e o —7‘00

¢ e o 3
. 188.%
. « 003
. 0,058

¢ 4 &+ & 0
[ ] L] . * »
s & a2 " »

of sectlons

e« &« e o 4« 1“'0 5
- -« - - * 0 .l"
a * - L] - l['oc
« « NACA 0Q10
¢ @ e 3 . 256

3

é
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TABILE I.- GEOMETRIC PROPERTIES OF THE MODEL - Concluded

Horizontal Tail {Continued)

m‘ea (semispan me]-) - - L] - - L] - L] L] L ] - L J L ] L4 - - * l'%? ftz
m&erod-yn-uiOChordooo.o --oa-.oa'000-833ﬁ
Tail volume, Zt/c (St/Sy) ¢ ¢ ¢ ¢ a o e ¢ o o e o ¢ o o o o o 0.65
Tail heights (measured vertically from the fuselage

center line 4o the hinge axis of the horizontal tail

(see £ige 1(B)) o o ¢ ¢ ¢« ¢ ¢ « ¢ e o ¢« s « s o o s » 0, 0,10 B/2

L] L *

Fuselage
F_'menessratiocioooc-conoacacotooicto1206
Frontal area (semispan moGel) « ¢ « o « o « o o o « o o o 0.273 £2
Fusgelage coordinates:

Distance from

nose, in. Rediug, In.
o] 0
1.27 1.04
2.5"" 1057
5.08 2.35
10.16 3.36
20.31 hohk
30.1|-'T ll'.%
39.4% 5.00
mcoo 5-00
60.00 5.00
T70.00 5.00
76.00 h.o6
82.00 %.83
88.00 k.61
ok .00 h.ot
100.00 3.7T
106.00 3.03
126.00 o]
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- TABLE IT.- INDEX OF TABLES AND FIGURES REPRESENTING

THE BASIC LONGITUDINAL DATA

Tall 1y Bs R, M,

Teble | Figure | , iont |deg |deg | million range
IIT 6 03;- 2 | =5 1 0.70 o 0.90
v 7 0 % -4 | s 1 0.70 o 0.90
v 8 0 323 -6 |51 1 0.70 o 0.90
vit | 10 [o0102 |-k |5 1 {0.70 to 0.90
vizz| 11 0 7-;- Y 2 0.70 o 0.90
- X 12 |tail ofP| - | 51 2 0.70 to 0.90
X 13 o% | 2 0.60 to 0.80
XI i tall off| -- | k1 2 0.60 to 0.80
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TATL, HEIGHT = O b/2, iy = -29,

A WING WITH %0° QF SWEEPBACK AND AN ASPECT RATIO OF 103

ﬁ L] 510’ R = 1,000,000

TABLE III.- LONGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTOR ATRPLANE CONFIGURATION HAVING

(a) M= 0.70, o-&)’ 0.83
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A WING WITH 40° OF SWEEPBACK AND AN ASPECT RATIO OF 10

ﬂ = 510, R = 1,000,0(1)

TARLE IV.- LONGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTOR ATRPLANE CONFIGURATIOR HAVING
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TABLE VI.- LONGITUDINAL CHARACTERTSTLCS OF A FOUR-ENGINE TRACTOR ATRPLANE CONFIGURATION HAVING
A WING WITH LO° OF SWEEPBACK AND AN ASPECT RATIO OPF 10; TATL OFF, g = 51°, R = 1,000,000
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TABLE X.~ LONGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTOR ATRPLANE CONFIGURATTON HAVING
A WING WITH 40° OF SWEEFBACK AND AN ASPECT RATTO OF 10; TATL OFF, B = 41°, R = 2,000,000
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OF SWEEPBACK AND AN ASPECT RATIO OF 10; TAIL HEIGHT = 0.10 b/2, 1¢ = -4°,

) R = 1,000,000

A WING WITH ko°
B =510

TABLE XI.- LORGITUDINAL CHARACTERISTICS OF A FOUR-ENGINE TRACTOR ATRFLANE CONFIGURATION HAVING

M= 0-70, 0-80, o‘%
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